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Abstract. We calculate the zero-point energy of a massive scalar field in the background of an
infinitely thin spherical shell given by a potential of the delta-function type. We use zeta-functional
regularization and express the regularized ground state energy (GSE) in terms of the Jost function of
the related scattering problem. We then find the corresponding heat-kernel coefficients and perform
the renormalization, imposing the normalization condition that the GSE vanishes when the mass of
the quantum field becomes large. Finally, the GSE is calculated numerically. Corresponding plots
are given for different values of the strength of the background potential, for both attractive and
repulsive potentials. The formal transition from a delta-function potential to Dirichlet boundary
conditions is not found to take place in the renormalized GSE.

1. Introduction

In recent years much interest has turned to the study of the Casimir energy for spherical
configurations. The issue concerns in particular the attempt to explain, by means of quantum
field theory (QFT), the puzzling phenomenon of sonoluminescence [1], that is the emission of
short intense pulses of light by collapsing bubbles of air in water. Up to now the hypothesis
that Casimir energy could play a role in the photon emission has not been supported enough
by a satisfactory QFT model for the dielectricball. In this context many authors have
studied a spherical shell in the vacuum of the electromagnetic field. Pioneering work on this
configuration is found in [2]. Also, in the last two decades, the bag model [3] has generated
much interest in spherical configurations. In papers [4, 7] the ground state energy (GSE) of
massive fields in the background of a perfectly reflecting shell (a bag) was investigated. A
natural extension of this problem is to consider boundary conditions which become transparent
at high frequencies, what one would expect for physical reasons. One of the simplest models is
a semi-transparent spherical shell realized by a delta-function potential (equation (3) below).
It is also interesting as some kind of intermediate configuration between ‘hard’ boundary
conditions and smooth background potentials. As was discussed in [5], the delta-function
potential has some features in common with the dielectric background.

In this paper the GSE of a massive scalar field in the background of a spherically symmetric
delta-function potential is calculated, analytically as far as possible and numerically in the
remaining part. The technique developed in [10] for smooth background potentials is used. It
turns out to be well suited for the delta-function potential, which is of course also not smooth.
This technique makes use of the zeta-functional regularization, which is well known [8, 9].
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The heat-kernel coefficients whose knowledge is required for the renormalization, were first
derived in [5]. Here they are rederived in the course of calculations. The calculation of the
GSE is based on the knowledge of the Jost function of the associated scattering problem, which
is given by a simple formula in terms of Bessel functions.

In the next section the general setup of the renormalization procedure is discussed. In
section 3 the necessary tools from the scattering theory and the general formulae for the
GSE are collected. In section 4 these formulae are specified for the delta-function potential,
the renormalization is carried out and the analytic part of the GSE is calculated. Section 5
contains the investigation of the asymptotic behaviour and in section 6 the numerical results
for the remaining part are presented. The results are discussed in the conclusions.

2. The model

We want to study the GSE of the scalar fieldϕ(t, Ex) (to be quantized) in the background of a
potentialV (r). We consider the following field equation:

(�+m2 + V (r))ϕ(x) = 0 (1)

wherem is the mass of the field. The spherical shell is a geometrical object with radiusR and
a surfaceS, to whom a classical energy in terms of classical parameters can be associated. The
total energy of the system reads

ETOT = Eclass +Equant

=
(
pV + σS + FR + k +

h

R

)
+

(
1

2

∑
n

ωn

)
(2)

whereV is the volume of the sphere,p is the pressure,σ is the surface tension andF , k and
h are other parameters with no special names. The classical part of the energy is expressed in
a general form in which the dependence on powers ofR is explicit. This definition is suitable
(as we discuss later) for its renormalization, it was introduced in [6] and used in many works
concerning the bag model and the Casimir energy for fermionic and scalar fields with spherical
boundaries [7]. The quantum contribution in (2) is the traditional expression for the vacuum
energy of a scalar field whose energy eigenvalues areωn. To render the eigenvalues of the
energy discrete we temporarily take a finite quantization volume with radiusL� 1.

The classical shell is static and spherically symmetric. It is described by a potential

V (r) = α

R
δ(r − R) (3)

whereα is the strength of the potential. The semi-transparency of the boundary will be
discussed later. The potential could also be expressed in other forms involving the mass, for
instance as

V (r) = αmδ(r − R)
since bothm andR are dimensional parameters. However, the choice ofR is the most natural
since the mass concerns the quantum field while the radius concerns the background potential,
which is independent from the field.

The quantum contribution to the total energy is divergent, for the regularization we adopt
the zeta-function technique. (For a review about zeta-regularization techniques see, e.g., [8,9].)
We define the regularized GSE as

Eϕ = 1
2

∑
(n)

(λ2
(n) +m2)1/2−sµ2s (4)
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whereµ is an arbitrary mass parameter,s is the regularization parameter which we put to zero
after renormalization andλ(n) are the eigenvalues of the wave equation

[−1 + V (x)]φ(n)(x) = λ2
(n)φ(n)(x). (5)

Now we introduce a zeta function. The zeta function of the wave operator with potentialV (r)

as defined in (5) is

ζV (s) =
∑
(n)

(λ2
(n) +m2)−s . (6)

We can express the GSE in terms of this zeta function:

Eϕ = 1
2ζV (s − 1

2)µ
2s . (7)

Using

x−s = 1

0(s)

∫ ∞
0

dt t s−1e−xt (8)

we can write equation (6) in the following form:

ζV (s) =
∑
(n)

1

0(s)

∫ ∞
0

dt t s−1e−λ
2
(n)t−m2t (9)

or

ζV (s) = 1

0(s)

∫ ∞
0

dt t s−1e−m
2t
∑
(n)

e−λ
2
(n)t (10)

that is

ζV (s) = 1

0(s)

∫ ∞
0

dt t s−1e−m
2tK(t). (11)

The functionK(t) is the heat kernel. Taking its asymptotic expansion fort → 0,

K(t) =
∑
(n)

exp(−λ2
(n)t)

t→0∼
(

1

4πt

)3/2 ∞∑
j=0

Aj t
j j = 0, 1

2, 1, . . . (12)

and making the substitutions → s − 1
2 in equation (11), we get an expansion ofEϕ in which

it is easy to isolate all the divergent (pole) terms. This makes it possible to define the total
divergent contribution to the GSE by

Edivϕ = −
m4

64π4

(
1

s
+ ln

4µ2

m2
− 1

2

)
A0 − m3

24π3/2
A1/2 +

m2

32π4

(
1

s
+ ln

4µ2

m2
− 1

)
A1

+
m

16π3/2
A3/2 − 1

32π2

(
1

s
+ ln

4µ2

m2
− 2

)
A2. (13)

The quantitiesAj are the heat-kernel coefficients. In definition (13) we have included terms
A1/2 andA3/2 with a half-integer index, which do not contain poles, to satisfy a normalization
condition (see below). The terms containing poles of the form 1/s contribute to the ultraviolet
divergencies. In a generic smooth background potentialVg(x) their corresponding cofficients
are well known:

A0 =
∫

d3x

A1 = −
∫

d3Vg(x)

A2 = 1
2

∫
d3x V 2

g (x).

(14)
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For the delta potentialV (r) the first two equations still hold, while the coefficientA2 cannot
be obtained from this formula because it would contain a squared delta function and must be
calculated in a different way. We define the renormalized zero-point energy by

Erenϕ = Eϕ − Edivϕ . (15)

To keep the total energy of the system unchanged we add the subtracted objectEdivϕ to the
classical energy. Then we also have a definition of a new classical energy

εclass = Eclass +Edivϕ . (16)

The transition fromEclass to εclass consists in the renormalization of the classical parameters
contained in equation (2). Since the heat-kernel coefficients are geometrical coefficients
depending on the background (and in our case containing powers ofR), each term in the
classical energy will dimensionally correspond to a term inEdivϕ , then we renormalize as
follows:

pV → pV − m4

64π4

(
1

s
+ ln

4µ2

m2
− 1

2

)
A0

σS → σS − m3

24π3/2
A1/2

FR→ FR +
m2

32π4

(
1

s
+ ln

4µ2

m2
− 1

)
A1

k→ k +
m

16π3/2
A3/2

h/R→ h/R − 1

32π2

(
1

s
+ ln

4µ2

m2
− 2

)
A2.

(17)

However, in our particular case, both theA0 andA1/2 coefficients, corresponding respectively
to p andσ , will turn out to be zero†, then only the last three terms in (17) will undergo
renormalization. Now we have

ETOT = εclass +Erenϕ .

The old classical energyEclass as defined in (2) is an infinite quantity (i.e. unphysical) since
experimentally we can only observe an energy which includes the vacuum fluctuations. The
termh/R in (17) deserves a particular attention. In fact, in the case of a massless quantum field
the vacuum energy takes the form∼1/R. Therefore, the classical and quantum contributions
would not be distinguishable and the calculation ofErenϕ would lose its predictive power. This
difficulty makes it impossible (as expressed in section 2 of paper [5]) to apply our procedure
to the casem = 0. Furthermore, we must note that the GSE proposed in (15) does not yet
have a unique meaning. For the uniqueness ofErenϕ we impose the normalization condition

lim
m→∞E

ren
ϕ = 0 (18)

which physically means that for a field of infinite mass we have no quantum fluctuations. We
fulfil this requirement by subtracting all the contributions inEdivϕ proportional to the non-
negative powers of the mass. That is, we also subtract terms with fractionary indices up to
and including the term resulting from the heat-kernel coefficientA2. The remaining part,
containing only negative powers ofm, will go to zero form→∞. Note that condition (18)
does not apply to a massless field.

† More exactly, the contribution ofA0 does not depend on the background and can be simply ignored.
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3. Representation of the GSE in terms of the Jost function

We adopt the approach which appeared for the first time in [10] for the calculation of the GSE
in the background of a smooth potential. The method for the calculation of the heat-kernel
coefficients for different boundary conditions was developed in an earlier work [11].

In the background of a spherical potential we have a radial Schrödinger equation(
d2

dr2
− l(l + 1)

r2
− V (r) + λ2

n,l

)
φn,l(r) = 0 (19)

wherel is the angular momentum. In the general scattering theory with a continuous spectrum
p we have the ‘regular solution’ [13] defined as

φp,l(r)
r→0∼ jl(pr) (20)

wherejl(pr) is the Riccati–Bessel function. The asymptotics of the regular solution are
expressed in terms of the Jost functionfl(p)

φp,l(r)
r→∞∼ i

2
(fl(p)ĥ

−
l (pr)− f ?l (p)ĥ+

l (pr)) (21)

whereĥ±l (pr) are the Riccati–Hankel functions. Now we examine the field at the boundary
of our quantization volume. As the potential has a compact support then, at the boundary,
expression (21) becomes an exact equation. It can be considered as an equation for the
eigenvaluesp = λn,l . Now taking for instance Dirichlet boundary conditions:φp,l(L) = 0,
we have

(fl(p)ĥ
−
l (pL)− f ?l (p)ĥ+

l (pL)) = 0. (22)

Now, since equation (22) is satisfied forp = λl,n, we can rewrite the sum in (4) as a contour
integral using the Cauchy theorem

Eϕ = µ2s
∞∑
l=0

(l + 1/2)
∫
γ

dp

2π i
(p2 +m2)1/2−s

∂

∂p
ln(fl(p)ĥ

−
l (pL)− f ?l (p)ĥ+

l (pL)) (23)

where the contourγ encloses all the solutions of equation (22) on the positive realp-axis and
also the bound state solutions in the limitL→∞, which lie on the imaginary axis. We further
simplfy equation (23) by separating the contour into two piecesγ1 andγ2, and expanding the
Hankel functions for largeL. Then it is possible to recognize in the integrand a term ipL

which corresponds to the Minkowski space contribution. This term can be dropped. Now we
shift the two contoursγ1 andγ2 to the imaginary axis and substitutep→ ik. We then obtain

Eϕ = −cosπs

π
µ2s

∞∑
l=0

(l + 1/2)
∫ ∞
m

dk [k2 −m2]1/2−s ∂
∂k

ln fl(ik). (24)

Since at the end our quantization volume will go to infinity (L→∞ ) this equation will be
independent from the boundary condition chosen for the quantization volume. Equation (24)
is a very general and useful representation of the GSE, where all the information about the
background potential is contained infl(ik), and possible bound states as well.

In order to perform the analytical continuation tos = 0 and the subtraction proposed in
(15) we splitErenϕ into two suitable parts, one of which is divergence free. We obtain this by
adding and subtracting the uniform asymptotic expansion of the Jost unction (for more details
on this procedure see [12]). We define

Erenϕ = Ef +Eas (25)

Ef = −cosπs

π
µ2s

∑
l

(
l +

1

2

)∫ ∞
m

dk [k2 −m2]1/2−s ∂
∂k

[ln fl(ik)− ln f asl (ik)] (26)
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and

Eas = −cosπs

π
µ2s

∑
l

(
l +

1

2

)∫ ∞
m

dk [k2 −m2]1/2−s ∂
∂k

ln f asl (ik)− Edivϕ (27)

wheref asl (ik) is the uniform asymptotic expansion of the Jost function which we will take up
to the third order inν ≡ l + 1

2 →∞. In fact, three orders are sufficient to make (26) converge
and allow to puts = 0 under the sign of the sum and the integral. Higher orders could be
included to speed up the convergence, but as the reader can check, the final result, that is the
quantityErenϕ introduced in (15), remains unalterated in whatever order (>3) in ν ln f asl (ik)
has been taken because the asymptotics subtracted in the integrand of (26) are added again in
(25).

Now we need the Jost function corresponding to our scattering problem, so we turn to
study the background potential.

4. Jost function of theδ-shell

The initial field equation

(�+m2 + V (r))ϕ(r) = 0 (28)

valid for−∞ < r <∞ can be divided into two parts: an equation for the free field

at r 6= R −→ (�+m2)ϕ(r) = 0 (29)

and an equation for the field on the shell, which includes the required transparency conditions

at r = R
{
φ′(R + 0)− φ′(R − 0) = α

R
φ(R)

φ being continuous.
(30)

For the delta potential the regular solution is

φk,l(r) = jl(kR)2(R − r) +
i

2
(fl(k)ĥ

−
l (kR)− f ?l (k)ĥ+

l (kR))2(r − R) (31)

consisiting of two pieces inside and outside the radiusR, respectively. As above,jl(kR)
is the Riccati–Bessel function andh±l (kR) are the Riccati–Hankel functions. Combining
equation (30) with (31) we get

jl(kR) = i

2
(fl(k)ĥ

−
l (kR)− f ?l (k)ĥ+

l (kR))

α

R
jl(kR) = k

(
i

2
(fl(k)ĥ

′−
l (kR)− f ?l (k)ĥ′+l (kR))− j ′l (kR)

)
.

(32)

We solve forfl(k), keeping in mind that the Wronskian determinant ofĥ±l is 2i. We find

fl(k) = 1

2i

(
−2i(−1) + 2i

α

kR
jl(kR)ĥ

+
l (kR)

)
(33)

or

fl(k) = 1 +
α

kR
jl(kR)ĥ

+
l (kR). (34)

For the Jost function on the imaginary axis we get

fν(ik) = 1 +αIν(kR)Kν(kR) (35)

which is in terms of the modified Bessel functions,Iν andKν , whereν = l + 1
2. We also need

the asymptotics of the Jost function:f asν (ik), or more exactly the logarithms off asν (ik). The
expansion of the product of the two Bessel functions in (35), fork andν equally large, is easily
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obtained with the help of [14]. Then we find the needed asymptotics as a sum of negative
powers ofν with coefficientsXj,n depending onα. We define

ln f asν (ik) ≡
3∑
n=1

∑
j

Xj,n
tj

νn

= α

2

t

ν
− α

2

8

t2

ν2
+
α

16

t3

ν3
+
α3

24

t3

ν3
− 3α

8

t5

ν3
+

5α

16

t7

ν3
(36)

with t = 1/
√

1 + k2R2

ν2 . Now, inserting (35) and (36) in (26) and (27) the renormalized GSE
Erenϕ = Ef + Eas can be calculated. Let us first begin with an analytical simplification of
Eas . We transform the sum overl into an integral with the help of the known Abel–Plana
formula [15]

∞∑
l=0

F

(
l +

1

2

)
=
∫ ∞

0
dν F (ν) +

∫ ∞
0

dν

1 + e2πν

F (iν)− F(−iν)

i
. (37)

In our case we have

F(ν) =
∫ ∞
m

dk ν[k2 −m2]1/2−s ∂
∂k

ln f asν (ik) (38)

which satisfies the validity conditions for equation (37).Eas is split into two addends:

E(1)as = −
cosπs

π
µ2s

∫ ∞
0

dν F (ν) (39)

and

E(2)as = −
cosπs

π
µ2s

∫ ∞
0

dν

1 + e2πν

(F (iν)− F(−iν))

i
. (40)

First we calculateE(1)as ; for thek- andν-integrations we use the formula∫ ∞
0

dν ν
∫ ∞
m

dk [k2 −m]1/2−s ∂
∂k

tj

νn
= −m1−2s 0(

3
2 − s)0(1 + j−n

2 )0(s + n−3
2 )

2(mR)n−20(
j

2)
(41)

then

E(1)as = −
cosπs

π
µ2s

∫ ∞
0

dν ν
∫ ∞
m

dk [k2 −m]1/2−s ∂
∂k

ln f asν (ik))

=
(
m1−2sµ2s

π

)∑
j,n

Xj,n
(mR)2−n

2

0( 3
2 − s)0(1 + j−n

2 )0(s + n−3
2 )

0(
j

2)
. (42)

Here, inserting the coefficients of (36) and expanding up to the first order ins all the terms
which depend on the renormalization parameter we get

E(1)as =
2α3− α
96πR

(
1

s
+ ln

4µ2

m2
− 2

)
− Rm

2α

8π

(
1

s
+ ln

4µ2

m2
− 1

)
+
mα2

16
.

The terms proportional tom2 andm0 contribute to the divergency of the energy. They are used
to calculate the heat-kernel coefficients in (13) and will disappear after the subtraction ofEdivϕ .
The term proportional tom corresponds to theA3/2 term of the heat-kernel expansion; although
this term generates no divergency it will be as well subtracted as mentioned in section 2, because
of our normalization condition.

Now we calculateE(2)as . The integration overk is carried out with the formula∫ ∞
m

dk [k2 −m]1/2−s ∂
∂k
tj = −m1−2s 0(

3
2 − s)0(s + j−1

2 )

0(
j

2)

( ν
mR
)j

(1 + ( ν
mR
)2)s+

j−1
2

. (43)
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We obtain

E(2)as =
cosπs

π
µ2sm1−2s

∑
j,n

Xj,n
0( 3

2 − s)0(s + j−1
2 )

0(
j

2)

1

(Rm)j

×
∫ ∞

0

dν ν

1 + e2πν

(
(iν)j−n

(1 + ( iν
mR
)2)s+

j−1
2

+
(−iν)j−n

(1 + (−iν
mR
)2)s+

j−1
2

)
. (44)

This expression can be transformed into

E(2)as = −
1

32π2

(
1

s
+ ln

4µ2

m2
− 2

)
− α

2πR
h1(Rm)− α2

8R2m
h2(Rm)

+
2α3 + 3α

48πR
h3(Rm)− α

8πR
h4(Rm) +

α

48πR
h5(Rm) (45)

where integration by parts was used. The following functions containing theν-integrations in
equation (44) are introduced:

h1(x) =
∫ ∞

0
dν

ν

1 + e2πν
ln

∣∣∣∣1− ν2

x2

∣∣∣∣
h2(x) =

∫ x

0
dν

ν

1 + e2πν

1√
1− ν2

x2

h3(x) =
∫ ∞

0
dν ln

∣∣∣∣1− ν2

x2

∣∣∣∣ ( ν2

1 + e2πν

)′
h4(x) =

∫ ∞
0

dν ln

∣∣∣∣1− ν2

x2

∣∣∣∣
(

1

ν

(
ν2

1 + e2πν

)′)′

h5(x) =
∫ ∞

0
dν ln

∣∣∣∣1− ν2

x2

∣∣∣∣
(

1

ν

(
1

ν

(
ν2

1 + e2πν

)′)′)′
.

(46)

We also see thatE(2)as has a pole of the form1
s

for j = n = 1. This pole will contribute to the
heat-kernel coefficientA2.

Now, sinceEf contains no poles, we are able to write down the complete heat-kernel
coefficientsAj , up to the orderj 6 2:

A0 = 0 A1/2 = 0

A1 = −4πRα A3/2 = π3/2α2 A2 = −2

3
π
α3

R
.

This coefficients are the same as in paper [5]. After performing the subtraction

(E(1)as +E(2)as )− Ediv

E(1)as cancels completely and onlyE(2)as (whitout its divergent portion) will contribute to the
total energy. So we have, finally,

Eas |s=0 = − α

2πR
h1(Rm)− α2

8R2m
h2(Rm) +

2α3 + 3α

48πR
h3(Rm)

− α

8πR
h4(Rm) +

α

48πR
h5(Rm). (47)
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5. Asymptotics ofEas

As a test for the plots that we are going to do, we check analytically the behaviour ofEas for
small and for large values ofR. To do so we must find the corresponding asymptotics of the
functionshn(x). ForR→ 0 we find:

lim
R→0

h1(Rm) ∼ ln(Rm) · 1
48 +C1

lim
R→0

h2(Rm) ∼ R2m2 +C2

lim
R→0

h3(Rm) ∼ −2 ln(Rm) · (− 1
2) +C3

lim
R→0

h4(Rm) ∼ −2 ln(Rm) · (−1) +C4

lim
R→0

h5(Rm) ∼ −2 ln(Rm) · (−4) +C5

(48)

where theCn are numbers resulting from theν-integrations. Then we have

lim
R→0

Eas ∼ − αC0

16πR
− α3

24πR

(
ln

1

Rm
− C3

)
+ O(R0) (49)

whereC0 = (−8C1 +C3− C4 +C5/3) ∼ 0.224 andC3 ∼ 1.96.
ForR→∞ we have

lim
R→∞

h1(Rm) ∼ − 1

m2R2

7

1920

lim
R→∞

h2(Rm) ∼ 1

48

lim
R→∞

h3(Rm) ∼ 1

24m2R2

lim
R→∞

h4(Rm) ∼ − 7

480m4R4

lim
R→∞

h5(Rm) ∼ − 16

m6R6

31

16 128

(50)

and we find

lim
R→∞

Eas ∼ − 1

384

α2

mR2
+ O

(
1

R3

)
. (51)

6. Numerical results

To numerically study the behaviour ofEas we rewrite it in the form

Eas = α

16πR
g1(Rm) +

α2

16R
g2(Rm) +

α3

16πR
g3(Rm) (52)

where the three functionsgn(x) are given by

g1(x) = −8h1(x) + h3(x)− 2h4(x) + 1
3h5(x)

g2(x) = −2
h2(x)

x
g3(x) = 2

3h3(x).

(53)

As it is clear from (52), for small values ofα Eas will behave like functiong1(x). For large
values ofα, Eas will behave like functiong3(x).

The plots of the threegn(x) functions are shown below in figure 1. In this, as in all the
following plots,m is set equal to 1.
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Figure 1. The curves of thegn(x) functions for a strength of the potential equal to 1.

Figure 2. The curve ofR ×Ef (R) for a strength of the potential equal to 1. ForR = 0 the curve
converges toR × Ef ∼ −3.9.

For the complete quantum energy we still need theEf contribution. In the expression
(26) forEf , after puttings = 0, we integrate by parts and obtain

Ef = 1

π

∞∑
l=0

(
l +

1

2

)∫ ∞
m

k√
k2 −m2

(ln fν(ik)− ln f asν (ik)) dk. (54)

This quantity cannot be further analytically simplified. Below we show (figure 2) a plot of
R · Ef as function ofR for α = 1.

For the total GSE as a function of the radius of the shell we get the curves shown below
(figures 3–5) for different values of the strength of the potentialα.

7. Conclusion

We have obtained a representation of the renormalized GSE of a scalar massive field in the
background of a semi-transparent shell containing convergent integrals of simple functions.
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Figure 3. The renormalized vacuum energyErenϕ (R) for positive and negative values of the
potential.

Figure 4. The renormalized vacuum energyErenϕ (R) for α = 0.3.

This expression is given by the sum of (52) and (54) and depends only on the two parameters of
the classical system, namely the radius and the strength of the potential of the spherical shell.
The plots ofErenϕ as a function of the radius show that for repulsive potentials the renormalized
GSE is positive only in some limited intervals of the radius axis and only whenα is smaller
than 1. For a strength of the potential larger than 1 the energy is always negative. This is the
most striking conclusion of our work. For very large values ofα the shell should be no more
transparent and the problem should formally become a Dirichlet boundary condition problem.
One could check this in equation (35) for the Jost function: here inserting a largeα the addend
1 becomes negligible, then one would just have the product of the two modified BesselI and
K functions; such a Jost function is exactly the one for a perfectly reflecting spherical shell
(Dirichlet boundary conditions). In that case the GSE is simply the sum of the energies inside
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Figure 5. The renormalized vacuum energyErenϕ (R) for α = 10.

and outside the shell. Then formally we should have:

lim
α→+∞GSE

semi−trans. = GSEmirror . (55)

Now it is shown in [4] that the ‘mirror’, configuration, in the massive field case, always has
positive GSE for repulsive potentials. This is in contradiction with our plots which show an
opposite sign. Furthermore, theA2 coefficient in paper [4] is zero. In our work,A2 also remains
a non-zero coefficient in the limitα→ +∞ demonstrating that the transition hypothesized in
(55) is singular. For flat parallel semi-transparent boundaries with delta-function potential in
the vacuum of a scalar massive field, the transition is actually fulfilled as shown in paper [16].
In the configuration analysed in this paper the limit (55) works only for the regularized GSE, as
mentioned above, but after the renormalization the limit is no more valid. This means that the
subtraction of the divergent part of the energy and the limitα→ +∞ are two non-commutative
operations. We remark again that the results of this work cannot be directly applied to the case
of a massless field, since the initial normalization condition would fail and the vacuum energy
would not be univocally defined.
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